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Optimal control problems for objects described by systems of elliptic differential equations are considered. The controls are 
coefficients of leading terms in the equations and are constrained by equalities and inequalities. This formulation covers the 
optimal design problem for mechanical systems consisting of two materials with given volumes. The objective function is a funct/onal 
which depends on the equations of state and their first der/vatives. The main result is the construction of necessary Wei©rstrass 
conditions on inclusions of domains of one material in a domain of the other, which enables one to construct an apprmdmation 
to the optimal solution. The case ff a single n-dimensional elliptic equation is investigated in detail, for which a necessary Weierstrass 
condition is obtained when the inclusion is an n-dimensional ellipsoid. The application of a necessary Weierstrass condition to 
two optimal design problems is considered: the minimization of the work of external influences and the maximiTation of the 
torsional rigidity of a prismatic rod. 

The traditional approach to the solution of optimal design problems consists of extending the set of 
admissible controls, within which the optimal solution exists. In most cases such a solution is of purely 
theoretical interest, and can be used to estimate the optimal value of  the functional. Attempting to 
approximate it by using some kind of regular solution is impracticable because in the approximation 
one has to deal wil l  a problem of high dimension. 

This paper foeu,es on the problem of obtaining a necessary Weierstrass condition for a strong 
minimum, which, together with the necessary conditions for a weak minimum, can be used to obtain 
a progressive improvement in the connectedness of the domains of inclusion of one material in the 
other [1]. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  

Let R" and R m be n- and m-dimensional Cartesian vector spaces, respectively, i.e. real vector spaces 
of ordered sets of :real numbers x = (Xl, . . . .  x,) and u = (Ux . . . .  , urn). Scalar products and norms in 
these spaces are defined in the usual manner 

(x, y ) = xiYi, Ixl = (x. x) In, (u, ag) = uiUi, lul = (u. u) 1/2 

Here and below the subscripts i andj take values from 1 to n, and the subscripts k, I take values from 
1 to m. Repeated i orj indices in a product imply summation from I to n, and repeated k or l subscripts 
imply summation from 1 to m. 

We denote by fl C I~ a regular domain with piecewise-smooth boundary F [2]. We assume that a 
vector function f =: ( f l ( x . ) , . . . ,  fro(x)) e L2(£~) is specified on [2, together with a vector-function F = 

2, 2~r 2 (FI(X) , .  • . ,  Fro(x)) ~ L (IF) on FF C F, where L (fi), L (Iv) are Hilbert spaces of vector functions 
with scalar products and norms 

<f,g)= IAg ax, Ilfll = I f  12dx 
fl tl 

<F,a)= le Gdx, II,ql =/II '12ar) 
rv rp krv 

tPrikL Mat. Mekh. Vcfl. 59, No. 5, pp. 742-749, 1995. 
*LUR'YE K. A. and CHE KEYEV A. V., Composition problem for an optimal isotropic multiphase composite. Preprint 
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In the domain t~ we consider vector-functions u = (ux (x ) , . . . ,  urn(x)) ~ H I ( ~ )  where H~(fl) is the 
Sobolev space of vector functions with scalar product and norm 

( U , 1 ) )  = I(Ukl~k +Uk,i~. k,i)dx,llUll=(U,U) 112 
f~ 

containing the subspace 

V(f~) = {u ~ Ht(~)lu(x) = O, x ~ Fu} 

where F,, C F, Fu f'l FF = O and mes F. > 0. 
In V(f~) we define the symmetric bilinear formA(u, x)) = aiildU k i'O~i in which the coefficients aijkl  possess . . tJ , . . . . .  

the symmetry propertms aij~a = ajkit = aUjk = ajlik,  and which satisfies the elliptlclty condmon 

A(w,  w) ~ ~ l l w l l  2 ,  Ot > 0 (1.1) 

We define u ~ V(~) to be the solution of the integral identity 

I [a(u, w) - ( f ,  w)]dx - l (F, w)dF = 0, Vw e V(~) (1.2) 
I" F 

I fA(u,  w) satisfies condition (1.1), a n d f e  L2(f~), F e L2(FF), then a unique solution u ~ V(~) of 
the integral identity (1.2) exists [3]. 

We will now consider the formulation of the optimal design problem. 
Suppose that the coefficients aOik?l and a(~.) t are specified in measurable subspaces ~1 C ~ and ~')2 C 

f~ which satisfy the conditions ~1 tq D,2 = O, fi l  U fi2 = fi and 

mes f~t = Xl, mes f~2 = X2 = mes f l  - ~.l (1.3) 

It is required to solve the problem 

inf . l (u) ,  . l ( u ) =  I q~(u,a(l) (u )) dx+ J {p(u))dx+ Jq~(u)dr" (1.4) 
D1 ['~2 FF 

where u satisfies the integral identity 

J A l ( u , w ) d x +  J A 2 ( u , w ) d x - ~ ( f , w ) d x -  J ( F , w ) d F = 0  (1.5) 
fll ~2 ~ FF 

Vw ~ V(~)  

which is obtained from (1.2) and in whichA(u, w) = ~,ikj~k~Wt, j. The functions tp and ~ in (1.4) are assumed 
to be differentiable n times with respect to all their arguments, and o(S)(u) is the matrix with components 
e;~ = a ~ t t , j  (s = 1, 2). 

The sets t~ 1 and ~"~2 c a n  have a fairly complicated structure and in certain cases can be found using 
averaging methods (el. the publication cited in the footnote). The core of the analysis performed below 
is the determination of the sensitivity of functional ,(1.4) to inclusions of domains with coefficients a ~  
in the domain f~l and domains with coefficients a~t  in the domain f~2. 

We shall now assume that in the domain f~ there are two regular domains fl l  and ~2 filled with the 
first and second materials respectively, that F12 is the boundary which separates the domains f~l and 
f~2, and that r = (rl . . . .  , rn) is the unit vector normal to it pointing from domain fll  into domain f12. 
We shall further assume that in the domains f~l and f12 the solution u to the integral identity (1.5) is a 
twice-differentiable vector-function with respect to the arguments xi. Then, using the identity 

a(S), , ( s )  . w  ~ ( s ) ,  , ,  
ikfl~k,i'Vl,j = ( aikjlUka l ),j -- t4ikjl~k,ij "Vl 

we obtain from (1.5) an elliptic boundary-value problem in the form of a system of differential equations 
with boundary conditions 

a ( S ) ,  (s) ..~ 
i~jr, k .O~f l=O,  x e ~ . , ,  s = l , 2  
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u~ '') = 0.  x ~ F , .  - , , (")  • ~"jk =Fk, x e F F  

j'~ jk 

U~I) =Uk (2), r.~ O) r~(2) J # = ' j ~ # ,  x~FI2; FI2=FI~F2,  u = u  (s), x ~  s 

where Fx and 1"2 are respectively the boundaries of the domains f~l and D~. 

2. NECESSARY OPTIMALITY CONDITIONS 

We shall assume that there is an optimal solution such that the two domains f ~  and t)~ with common 
boundary Fx2(F12 =: F~ N F~) are filled with the first and second materials, respectively. 

We construct an extended functional I(u) in which the left-hand side of the identity (1.5) has been 
subtracted from the functional J(u), and compute its first variation 

81=XI(W, SU)+X2(W, SU)+ ~ ~ ~ukdI~+ ~ [AI(U*,W )-A2(u*,w)]~rdT'+ 
rF buk q'~r 

+ I [A2(u*,w)-Al(U*,W)]SrdF+ ~ [Al(u*,w)-A2(u*,w)]SrdF (2.1) 
r ~ r  rl'2 

+ ~ ( u  ,G (u))Gik (Su)+As(w,$u) dx, X,(w,~u) = -~uk (U ,a ~ ~(u ))~uk Oq~ * (") " (~) 

As(u*,w) = q~(u*,8(S)(u*)) - As(u*, w), s = 1,2 

Here u* is the optimal solution of the problem, ~u is the variation of u*, and 8r is a variation of the 
boundary FT2 satisf-)dng the condition [1] 

8rdr'+ ~ 8rdF+ I 8 rdF=0  (2.2) 
r~'2 r ;~r  r.:~r 

which follows from ,condition (1.3). 
In (2.1) we put w = u*, where ~* satisfies the integral identity 

z, (~', w) + z2(~*, w) + l F 0--~(u')wkdr = 0, Vw E V(~) 

Then, using fit, ~ V(t)), we obtain the inequality 

8 /= I [Al(u*,'o*]-A2(u*,'o*]SrdF+ ~ [Al(u*,x)*]-Az(u*,x)*] 8rdF+ 
r;~r r ~ r  

(2.3) 

+ f[Al(u*,u*]-  A2(u*,u*]Srdl"~> 0 (2.4) 
r;2 

which must be satisfied by any variations of the boundary F~'2, F~ N F, F~ N F satisfying equality (2.2). 
It has been shown [2] that the conditions 

Ai (u*, X)'~)_ A2(u*, X)*)~< ~, x ~ l'l* ~ 1" 

AI (u', 'O")-A2 (u*,'o*)~> ~, x ~ F 2 n r  

AI(u*,~*)-A2(u* '0")=~, X~I"l* 2 (2.5) 

are necessary and sufficient for (2.2) and (2.4) to be satisfied. 

3. NECESSARY WEIERSTRASS CONDITIONS 

We will analyse a variation of the functional in which a small domain of the first material is included 
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in the domain of the second material, and vice versa. 
We take Vx0 • f~(Vx0 • ~ )  and a convex domain D~(rl) all of whose geometrical dimensions can 

vary in proportion to rl. Then 

mes ~00l)  = rl" mes ffZ0(fl 0 = f~0(1)) (3.1) 

In order for condition (1.3) to remain satisfied, it is necessary to vary the boundary F~2 by an amount 
r(y, ~) ,y  • F~2 [2], where r(y, rl) < 0 in the case of an inclusion of the first material in the second, and 
r(y, 11) > 0 in the case of an inclusion of the second material in the first. 

In this case functional (1.4) can be reduced to the form 

I = I [ v / ( u ) - ( F , w ) l d F -  ~ ( f , w ) d x +  IAj(u ,w)dx+ 
FF ~ ~l 

+~A2(u ,w)dx± J [Al(u,w)-A2(u,w)]d~ 
f~2 f~)(~) 

(3.2) 

The plus sign in front of the last integral corresponds to the inclusion of the first material in the second, 
and the minus sign to the inclusion of the second material in the first. 

In order to satisfy condition (1.3) the function r(y, rl) must be proportional to 11 n, hence & = 
.. 8"-Ir = 0. The variations &a . . . . .  8"u are given by integral identities in which the external actions are 
functions proportional to ~ r , . . . ,  8"r, and hence 8u = . . .  = 8"-lu = 0 [1]. 

Substituting w = v* into functional (3.2) and sequentially computing the variations 81, . . . ,  8"I, we 
obtain 

81 . . . . .  8n-ll = 0 

5 " I =  J[Al(u ,a) ) - A 2 ( u  ,x)*)]SnrdF+ drl" [A)(u ,x) ) - A 2 ( u  ,x)*)]dx 
r~2 \t~)(n) :n=0 

Using the necessary conditions 8nl ~> 0 and (2.5) we find 

d n  • * 

5: drl----Zt~!(n)[At (u ,x) ) -  A2(u*,aj*)]dx I> +n!~mes~ 0 (3.3) 

The minus sign is taken for pointsx0 • f~T and the plus sign forx  0 • ~ .  
In the left-hand side of inequality (3.3) the integral is evaluated over the domain f~o(rl) (an n-dimen- 

sional volume proportional to 11 n) of an expression which depends on the vector function u, which is a 
perturbation of the solution to the integral identity (1.5) that has been produced by the inclusion Do(rl). 

We will obtain integral identities for determining u. To do this we consider an inclusion t'2o(~) of  the 
second material in the domain f~.  Subtracting from the integral identity for this ease the integral identity 
for the optimal solution u* and transforming it, we find 

I A l ( u ° - u * , w )  dx+ J ( u ° - u * , w )  dx I (t) * (2) * = ri[(~il (u (Xo))-(~i l  (u (Xo))]WldF , 
\ (,n) no Oao 
Vx0 n;  (3.4) 

It is of course imL~ssible to determine u exactly in the integral identity (3.4). However,  when 
11 ~ 0 we have u ~ u ° for which the integral identity 

I Al(u ° - u*,co)dx + I A 2 ( u  ° - u ° , o ) d x  = J r / [ o ~ ) ( u ' ( x o ) )  - ol~)(u*(xo))lotdF, 
a" \o<) o<) ~t~) 

Vx 0 e ~ (3.5) 

holds, where the ri are the components of the external unit normal to the boundary Of~o of  the domain 
~0. 

Performing similar constructions for an inclusion D~(rl) of the first material into the second, we obtain 
an integral identity differing from (3.5) by the replacement of the superscript 1 by the superscript 2 
and vice versa. 
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Using the latter two identities together with inequality (3.3), we finally obtain the inequalities 

AI(U°, ~°)-A2(u°, ~*)~< ~, x~ 
AI (u 0, ~0) _ A2 (u 0, ~* ) I> ~, x e £22 (3.6) 

u* =a;(x0), ~* =~*(x0), u°=u°(xo) 

Inequalities (3.6) are called necessary Weierstrass conditions. The first must be satisfied by anyx0 
~2~ and the second for anyx0 ~ ~[ .  

4. NECESSARY W E I E R S T R A S S  C O N D I T I O N S  FOR AN E L L I P S O I D A L  
I N C L U S I O N  (m = 1) 

For the case when m = 1 the bilinear formA(u,  ~) = aiyu~,j can be reduced to the form 

A(u, a;) = h u , [ o  i (4.1) 

by a change of c(>~rdinates. 
Below we shall assume that the Cartesian system of coordinates x i has been chosen from the start so 

that the bilinear formA(u, a)) has the form (4.1), and also h2 > hi. The components of the vectors o (~) 
are given by the relations 0~l)(u) = hlu$, o~ 27 (u) = h2u~ and the necessary Weierstrass conditions (3.6) 
are the inequalitk;s 

ah u%~; - ~o(u',o <2>(u °)) + ~o(u',o <l>(u °)) ~ 

ah u%~ - ~o(u*, o(2)(u°)) + ~o(u*, o")(u°)) ~ (4.2) 

where Ah = h 2 - h 1. 
In this case the solution u ° of the integral identities (3.5) and (3.6) are known [4] 

( s )  * U 0 = U* + I¢, i XiU, i ( X o )  , S = 1,2 

K ~ I )  = _ ~ t l . t  i ( h I + ,~khlJ. i ) - I ,  K ~ 2 )  : l~khl.l, i ( h2 + l~khi.L i ) -  I (4.3) 

1 " dp 
I t i : 2 a l ' " a n ! ( a ~  + p)4(at2 + p)...(an 2 +p) 

where the supersc:ript 1 in parentheses corresponds to an inclusion of the second material in the first 
and the 2 corresponds to the first material in the second. 

Without loss of generality we can assume that the semi-axes of the ellipsoid have been ordered as 
follows: 

aj = 1, a 1 ~> a 2 l>...a n t> 0 (4.4) 

It then follows from (4.3) that 0 ~< IXl ~< IX2 ~ • • • Ixn ~< 1, the last inequality being obtained from an 
estimate of the integrand in integral (4.3) 

Ixn -< an ~ dp 2 o(a 2+p)3/2 =1 

Analysis shows th~tt lc(1)(IX) is a monotonically decreasing, and lc(2)(ix) is a monotonically increasing 
function of Ix when 0 ~< IX ~< 1 (Fig. 1). 

We will consider the case when function (p = q)(u). Then inequalities (4.2) take the respective forms 

; ; ~ Ahlc 0 , ' "  Ahu i'o i -< ~ + i u , i ' ° ,  i ' VXo E ~'~1 

Ahu~u* i >~;__  (2) * * * , , ±alc i u iV i, Vx 0 ~f~2 (4.5) 
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4bh'~" wr"J j 
-4hh; 

Fig. 1. Fig. 2. 

(where u* = u*(xo),  a~* = ~a*(x0) ). We denote by oq the angles between Vu*(x0)---the gradient of the 
function u* at the point Xo---and the axes of the n-dimensional ellipsoid, by [~i the angles between Vu*(x0) 
- - the  gradient of the function ~* at the point xw--and the axes of the n-dimensional ellipsoid, and by 
~/the angle between the gradients Vu*(x0) and Vu*(x0). Then inequalities (4.5) can be represented in 
the form 

AhlVu*IlVx)*IcosT ~< ~ -  tYPl (O~i,~i,a i) 

AhlVu* IIV~*lcos)' ~ ~-dP2(~i ,~i ,a  i) 

~s = AhlVu*llVx)*l~zl s) coscti cos~i, s = 1,2 

Inequalities (4.6) must be satisfied by all oq, [ii, ai satisfying the equalities 

(4.6) 

cos2~i=l ,  ~ cos2~i=l,  ~ cos~/cos~$i=cosT 
i=1 i=1 i=1 

and inequalities (4.4). 
We will solve the two problems 

(4.7) 

max ~l(o~i ,~i , ,a i ) ,  min di)2(O~i,~i,ai) 
°~i,[Ji,ai °ti,[}i ,ai 

for if, i, ~i, ai satisfying (4.7) and (4.4). Then inequalities (4.6) hold for all o~, 13i, ai satisfying conditions 
(4.7) and (4.4). The maximum of the function ~ 1 ( ~ ,  ~i, ai) and the minimum of the function ~2(~i, I}i, 
ai) are reached at the points (Fig. 2) 

al . . . . .  an_ 1 = 1, an = O, ¢x I = -[$1 = 7/2 

~ 2  = [~2 . . . . .  ~n-I = ~n-1 = •/2, ¢Xn = g/2 -- 7/2, [~n = ~/2 + 7/2 (4.8) 

and are given by 

~ = h.z-lAh21Vu*llV~*lsin2(7 / 2), ~2 = -hl-lAh21Vu*llV~*lsin2(~//2) 

Analysis of relations (4.8) shows that the extremal values of the functions ~1 and ~2 are reached on 
an n-dimensional oblate spheroid the normal to which coincides with the x, axis. The necessary Weier- 
strass conditions finally take the form 
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AhlVu*llV~*lcosT ~ ~ -  h2-1Ah21Vu*lV~*lsin2(T / 2) 

AhlVu*llVx)*lcosy ~ ~+h~lAh21Vu*lV~*ls in2(y /2)  

where  u* = u*(xo):, ~* = ~*(x0). 

(4.9) 

Example 1. Consider the problem of minimizing the work o f f  and F through a displacement u. In this case tp 
= fu, ~ = Fu. Analysis of integral identities (1.5) and (2.3) shows that y = 0, and the necessary Weierstrass conditions 
consequently have the simple form 

AhlVu*12~<~, x 0 ~fl~; AhlVu*I2~,  x 0 ~ (4.10) 

We putxo = y_ = y - Or in the first inequality andxo = y~. = y + Or in the second, where r is the unit normal to 
the boundary FI'2, andy e FT2. We also note that ~ = h2 1 Vu* 12 0%) 12 - hi I Vu* (y_) 12. Analysis of inequalities 
(4.10) shows that they can be satisfied if 

Ou*(y_)/Or=Ou*(y+)/Or=O, Vy E Fl2 

Example 2. Consider the problem of maximizing the torsional rigidity of a rod composed of two materials, one 
flexible and one stiff, with shear moduli G 1 and G2, respectively. In this case q~ = - 2 u , f  = 2, h I = pG1, h2 = pG2, 
where the quantity p is proportional to the torque applied to the rod. It follows from integral identities (1.5) and 
(2.3) that a)* = u*. In this case y = •, ~ = -A I V u*(y) 12 fory E FI'2, and inequalities (4.9) acquire the form 

hlh2-11Vu.* (Xo)12>~, Vx 0 E ~  
(4.11) 

h2h~ I IVu* (Xo)l 2 ~< ~, Vxo ~ fl~ 

We putxo = y_ = y - Or in the first inequality andxo = y+ = y + Or in the second, wherey e F~2 and r is the unit 
normal to F~2. Then from (4.11) one can obtain the inequality 

h I (2h 2 - h I )lVu* (y_)12 ~ h22 IVu* (y+)12 

h 2 (2h I - h 2 )lVu* (y+)[2 ~ h?lyu" (y_)[2 

from which it follows that they can only be satisfied in the case when 

u.i(y_)=u,i(y+)=O, i=l  ..... n 
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